My customer (a Data Center) give me a small dataset that contain time to replace N servers node.
I need to analysis and Build predicting program that can predict how long to replace N servers node.
Input Training:
Data of “p027.txt” show below:
Minutes Units
23 1 29 2 49 3 64 4 74 4 87 5 96 6 97 6 109 7 119 8 149 9 145 9 154 10 166 10
Example Input test:
2 40 8 10
Example Output:
Predicting minutes for units :
35 622 128 159
Visualization about Model:
### Code:
import graphlab
# if not csv format, need speccify delimiter
sf = graphlab.SFrame.read_csv('http://www.ats.ucla/edu/stat/examples/chp/p027.txt',delimiter='t');
graphlab.canvas.set_target('ipynb')
sf.show(view="Scatter Plot", x="Minutes", y=Units")
Finally, what i need: SFrame - Python
Resources you will need:
- Graphlab library
- SFrame library
Example Code:
import graphlab
sf = graphlab.SFrame.read_csv('http://www.ats.ucla.edu/stat/examples/chp/p027.txt',delimiter='t')
my_features1 = ["Units"]
my_features_model = graphlab.linear_regression.create(sf,target='Minutes',features=my_features1,validation_set=None)
repair_time = {
'Units':10
}
print my_features_model.predict(repair_time)
Finish, Classify the problem to become linear regression single value. It’s my simple way to solve.